http://www.hankcs.com/nlp/hmm-and-segmentation-tagging-named-entity-recognition.html
HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。
2014年11月23日更新:
我已利用HMM角色标注实现了中国人名、翻译人名、日本人名、地名、机构名等命名实体的识别,请参考此目录。
HMM描述
任何一个HMM都可以通过下列五元组来描述:
1 2 3 4 5 | :param obs:观测序列 :param states:隐状态 :param start_p:初始概率(隐状态) :param trans_p:转移概率(隐状态) :param emit_p: 发射概率 (隐状态表现为显状态的概率) |
例子描述
这个例子可以用如下的HMM来描述:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | states = ( 'Rainy' , 'Sunny' ) observations = ( 'walk' , 'shop' , 'clean' ) start_probability = { 'Rainy' : 0.6 , 'Sunny' : 0.4 } transition_probability = { 'Rainy' : { 'Rainy' : 0.7 , 'Sunny' : 0.3 }, 'Sunny' : { 'Rainy' : 0.4 , 'Sunny' : 0.6 }, } emission_probability = { 'Rainy' : { 'walk' : 0.1 , 'shop' : 0.4 , 'clean' : 0.5 }, 'Sunny' : { 'walk' : 0.6 , 'shop' : 0.3 , 'clean' : 0.1 }, } |
求解最可能的天气
求解最可能的隐状态序列是HMM的三个典型问题之一,通常用维特比算法解决。维特比算法就是求解HMM上的最短路径(-log(prob),也即是最大概率)的算法。
稍微用中文讲讲思路,很明显,第一天天晴还是下雨可以算出来:
-
定义V[时间][今天天气] = 概率,注意今天天气指的是,前几天的天气都确定下来了(概率最大)今天天气是X的概率,这里的概率就是一个累乘的概率了。
-
因为第一天我的朋友去散步了,所以第一天下雨的概率V[第一天][下雨] = 初始概率[下雨] * 发射概率[下雨][散步] = 0.6 * 0.1 = 0.06,同理可得V[第一天][天晴] = 0.24 。从直觉上来看,因为第一天朋友出门了,她一般喜欢在天晴的时候散步,所以第一天天晴的概率比较大,数字与直觉统一了。
-
从第二天开始,对于每种天气Y,都有前一天天气是X的概率 * X转移到Y的概率 * Y天气下朋友进行这天这种活动的概率。因为前一天天气X有两种可能,所以Y的概率有两个,选取其中较大一个作为V[第二天][天气Y]的概率,同时将今天的天气加入到结果序列中
-
比较V[最后一天][下雨]和[最后一天][天晴]的概率,找出较大的哪一个对应的序列,就是最终结果。
这个例子的Python代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | # -*- coding:utf-8 -*- # Filename: viterbi.py # Author:hankcs # Date: 2014-05-13 下午8:51 states = ( 'Rainy' , 'Sunny' ) observations = ( 'walk' , 'shop' , 'clean' ) start_probability = { 'Rainy' : 0.6 , 'Sunny' : 0.4 } transition_probability = { 'Rainy' : { 'Rainy' : 0.7 , 'Sunny' : 0.3 }, 'Sunny' : { 'Rainy' : 0.4 , 'Sunny' : 0.6 }, } emission_probability = { 'Rainy' : { 'walk' : 0.1 , 'shop' : 0.4 , 'clean' : 0.5 }, 'Sunny' : { 'walk' : 0.6 , 'shop' : 0.3 , 'clean' : 0.1 }, } # 打印路径概率表 def print_dptable(V): print " " , for i in range ( len (V)): print "%7d" % i, print for y in V[ 0 ].keys(): print "%.5s: " % y, for t in range ( len (V)): print "%.7s" % ( "%f" % V[t][y]), print def viterbi(obs, states, start_p, trans_p, emit_p): """ :param obs:观测序列 :param states:隐状态 :param start_p:初始概率(隐状态) :param trans_p:转移概率(隐状态) :param emit_p: 发射概率 (隐状态表现为显状态的概率) :return: """ # 路径概率表 V[时间][隐状态] = 概率 V = [{}] # 一个中间变量,代表当前状态是哪个隐状态 path = {} # 初始化初始状态 (t == 0) for y in states: V[ 0 ][y] = start_p[y] * emit_p[y][obs[ 0 ]] path[y] = [y] # 对 t > 0 跑一遍维特比算法 for t in range ( 1 , len (obs)): V.append({}) newpath = {} for y in states: # 概率 隐状态 = 前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率 (prob, state) = max ([(V[t - 1 ][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states]) # 记录最大概率 V[t][y] = prob # 记录路径 newpath[y] = path[state] + [y] # 不需要保留旧路径 path = newpath print_dptable(V) (prob, state) = max ([(V[ len (obs) - 1 ][y], y) for y in states]) return (prob, path[state]) def example(): return viterbi(observations, states, start_probability, transition_probability, emission_probability) print example() |
输出:
1 2 3 4 | 0 1 2 Rainy: 0.06000 0.03840 0.01344 Sunny: 0.24000 0.04320 0.00259 (0.01344, ['Sunny', 'Rainy', 'Rainy']) |
NLP应用
具体到分词系统,可以将天气当成“标签”,活动当成“字或词”。那么,几个NLP的问题就可以转化为:
-
词性标注:给定一个词的序列(也就是句子),找出最可能的词性序列(标签是词性)。如ansj分词和ICTCLAS分词等。
-
分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
-
命名实体识别:给定一个词的序列,找出最可能的标签序列(内外符号:[内]表示词属于命名实体,[外]表示不属于)。如ICTCLAS实现的人名识别、翻译人名识别、地名识别都是用同一个Tagger实现的。
小结
HMM是一个通用的方法,可以解决贴标签的一系列问题。
目录
转载请注明: »